

7-12 Science Constructing Meaning Functions Scope and Sequence

This chart reflects the dominant and supportive language functions for production

	Elaboration/ Description*	Compare and Contrast*	Sequencing*	Proposition and Support* (Problem/Solution)	Cause and Effect*
7	Introduced	Introduced	Introduced	Introduced	Introduced
Life Science	Q1 & 3, Q2 & 4	Q 1 & 3, Q2 & 4	Q1 & 3, Q2 & 4	Q2 & 4	Q2 & 4
8	Continued Practice	Continued Practice	Continued Practice	Continued Practice	Continued Practice
Physical Science	Q1, Q2, Q3, Q4	Q1, Q2, Q4	Q1	Q1	Q1, Q2, Q3, Q4
Biology	Mastery	Continued Practice	Continued Practice	Continued Practice	Continued Practice
	Q1, Q2, Q3, Q4	Q1, Q2	Q1, Q2, Q3	Q1, Q3	Q1, Q3, Q4
Physical Science	Mastery	Mastery	Mastery	Continued Practice	Mastery
(Earth)	Q1, Q2, Q3, Q4	Q1, Q2, Q3, Q4	Q2, Q3, Q4	Q2, Q3	Q1, Q2, Q3, Q4
Chemistry	Mastery	Mastery	Mastery	Continued Practice	Mastery
	Q1, Q2, Q3, Q4	Q1, Q2, Q3, Q4	Q1, Q2, Q3, Q4	Q2, Q3	Q1, Q3, Q4
Physics	Mastery	Mastery	Mastery	Mastery	Mastery
	Q1, Q2, Q3, Q4	Q1, Q2, Q3	Q1, Q2, Q3, Q4	Q1, Q2, Q3	Q1, Q2, Q3, Q4

* The language function of summarizing is to be used throughout the curriculum in conjunction with the other language functions.

CM Functions - Year At-A-Glance

Physics						
Quarter	Dominant and Supportive Functions					
1	Cause and Effect Elaboration/Description Sequencing Compare and Contrast Proposition and Support					
2	Cause and Effect Elaboration/Description Sequencing Compare and Contrast Proposition and Support					
3	Cause and Effect Elaboration/Description Sequencing Compare and Contrast Proposition and Support					
4	Cause and Effect Elaboration/Description Sequencing					

Physics: English Learner Support Supplement to Pacing

Quarter 1 Standards	Functions for Production (Bold denotes dominant function)		Sample Products	Sentence Frames	Structured Oral Language Practice Routine(s) (CM Binder Tab 3)	Correlating Thinking Map(s)
a. Students know how to solve problems that involve constant speed and average speed.	Does the textbook provide language of dominant function for production? YES or NO	Elaboration/ Description Compare and Contrast	 Summary Template (Problem Solving Method) Single Bubble and/or Double Bubble Map 	Elaboration/ Description is illustrated by : Compare and Contrast The differences/ similarities between and are :	 Think-Pair-Share What is the difference between instantaneous versus average velocity? Cooperative Learning Groups (white boards for problem solving development) (not in CM Binder) 	Circle Map Double Bubble Map
b. Students know that when forces are balanced, no acceleration occurs; thus an object continues to move at a constant speed or stays at rest (Newton's first law).	Does the textbook provide language of dominant function for production? YES or NO	Sequencing Elaboration/ Description Cause and Effect	 Quick write/draw (Freebody diagrams) Lab Report Write- up Flow Map (Sequencing-Problem Solving) 	 <u>Sequencing</u> Refer to "Lab Report Drafting Template" If an object, it will unless Initially, then Prior to, 	 Heterogeneous Cooperative Learning Groups (Lab Groups) (Not in CM Binder) Think-Pair-Share (Summarize Newton's first law) Talking Stick Students use frames to discuss demonstration of Newton's First Law in Learning Groups. 	Flow Map
c. Students know how to apply the law F=ma to solve one- dimensional motion problems that involve constant forces (Newton's second law).	Does the textbook provide language of dominant function for production?	Cause and Effect Elaboration/ Description Sequencing	 Sequence Flow Map (Problem Solving) Lab Report Write- up Equation Bookmark (Bookmark containing relevant equations) 	Cause and Effect Refer to "Lab Report Drafting Template" • results in • is proportional to	 Heterogeneous Cooperative Learning Groups (Lab Groups) (Not in CM Binder) Think-Pair-Share (Summarize Newton's second law) 	Multi-Flow Map

1

Quarter 1 Standards	Functions for Production (Bold denotes dominant function)		Sample Products	Sentence Frames	Structured Oral Language Practice Routine(s) (CM Binder Tab 3)	Correlating Thinking Map(s)
d. Students know that when one object exerts a force on a second object, the second object always exerts a force of equal magnitude and in the opposite direction (Newton's third law).	Does the textbook provide language of dominant function for production?	Elaboration/ Description Cause and Effect	• Summary • Haiku or Couplet (Develop a Haiku/ Couplet to elaborate on Newton's third law)	Elaboration/ Description Elaboration/ Description is illustrated by One example of Newton's Third Law is	 Think-Pair-Share (Summarize Newton's third law) Talking Stick Students discuss demonstration of Newton's Third Law in Learning Groups using sentence frames. 	Circle Map
h*. Students know Newton's laws are not exact but provide very good approximations unless an object is moving close to the speed of light or is small enough that quantum effects are important.	Does the textbook provide language of dominant function for production? YES or NO	Elaboration/ Description	 RAFT (History of Physics) – Strategy that integrates reading and writing in a non- traditional way. RAFT stands for: (1) Role; (2) Audience; (3) Format; and (4) Topic Sources: www.readingquest.or g www.greece.k12.ny.u s 	Elaboration/ Description is illustrated by One example ofis	• Talking Stick Students can present RAFT to their group.	Circle Map
i*. Students know how to solve two- dimensional trajectory problems.	Does the textbook provide language of dominant function for production?	Sequencing Elaboration/ Description Compare and Contrast	 Flow Map (Problem Solving) Bridge Map (Vertical/Horizontal Independence) Quick write/draw (Freebody diagrams) Lab Report Write- up Equation Bookmark 	Sequencing Refer to "Lab Report Drafting Template" • First, Then, and Eventually, • Lastly,	• Give One Get One Heterogeneous Cooperative Learning Groups (Lab Groups). Students can explain to each other how to solve two-dimensional trajectory problems.	Flow Map

Quarter 1 Standards	Functions for Production (Bold denotes dominant function)		Sample Products	Sentence Frames	Structured Oral Language Practice Routine(s) (CM Binder Tab 3)	Correlating Thinking Map(s)
j*. Students know how to resolve two- dimensional vectors into their components and calculate the magnitude and direction of a vector from its components.	Does the textbook provide language of dominant function for production? YES or NO	Sequencing Elaboration/ Description	• Flow Map	• <u>Sequencing</u> • First, then Next, 	• Numbered Heads Together	Flow Map
k*. Students know how to solve two- dimensional problems involving balanced forces (statics).	Does the textbook provide language of dominant function for production? YES or NO	Proposition and Support Elaboration/ Description Cause and Effect Sequencing	 Lab Report Write- up (Refer to Lab Report Drafting Template) Key-Term Foldable (Force Types) reference text supplemental materials) To be used as a tool by students when explaining the key terms in context. Cornell Notes on Demo Lab (Force Table or Balanced Forces on a Loop) (To be used as a tool to produce the final product. Cornell Notes themselves are not products) 	Proposition and Support Refer to "Lab Report Drafting Template" To solve the problem, we will The question under consideration is To answer the question , we hypothesize that My hypothesis is because 	 Heterogeneous Cooperative Learning Groups (Lab Groups) Numbered Heads Together 	Multi-Flow Map

Quarter 2 Standards	Functions for Production (Bold denotes dominant function)		Sample Products	Sentence Frames	Structured Oral Language Practice Routine(s) (CM Binder Tab 3)	Correlating Thinking Map(s)
 a. Students know how to calculate kinetic energy by using the formula E = ¹/₂ mv². b. Students know how to calculate changes in gravitational potential energy near Earth by using the formula (change in potential energy) = mgh (h is the change in the elevation). 	Does the textbook provide language of dominant function for production? YES or NO	Elaboration/ Description Compare and Contrast	 Two-Panel Flip Chart (Compare/ Contrast Kinetic & Potential Energies) reference textbook supplemental materials Lab Report Write- up 	Elaboration/ Description • One example of is • can be explained as Compare and Contrast • The primary distinction between and can be described as	 Heterogeneous Cooperative Learning Groups (Lab Groups) Talking Chips (Compare & Contrast KE and PE) 	Circle Map Double Bubble Map
 c. Students know how to solve problems involving conservation of energy in simple systems, such as falling objects. h*. Students know how to solve problems involving conservation of energy in simple systems with various sources of potential energy, such as capacitors and springs. 	Does the textbook provide language of dominant function for production? YES or NO	Elaboration/ Description (2c & d) Sequencing (2h) Cause and Effect (2c & h)	 Sequence Fold (Problem Solving) Multi-Flow Map (Energy Conversion in simple systems) Lab Report Write- up Summary Use the summary template in the CM Binder. Or download it from the website and modify it to fit the needs of the students. (Conservation of Mechanical Energy Equation) 	Elaboration/ Description Energy is transferred from to when 	 Heterogeneous Cooperative Learning Groups (Lab Groups) Talking Chips (Solving Conservation of Energy Problems) 	Circle Map Multi-Flow Map

Quarter 2 Standards	Functions for Production (Bold denotes dominant function)		Functions for Production (Bold denotes dominant function)		Sample Products	Sentence Frames	Structured Oral Language Practice Routine(s) (CM Binder Tab 3)	Correlating Thinking Map(s)
 d. Students know how to calculate momentum as the product mv. e. Students know momentum is a separately conserved quantity different from energy. f. Students know an unbalanced force on an object produces a change in its momentum 	Does the textbook provide language of dominant function for production? YES or NO	Elaboration/ Description (2d, e & f) Compare and Contrast (2e) Cause and Effect (2f)	 Circle Map (Momentum) Multi-Flow Map Double Bubble Map 	• is different • is different than because 	• Numbered Heads Together (Conservation of Momentum Problem Solving)	Circle Map Multi-Flow Map Double Bubble Map		
g. Students know how to solve problems involving elastic and inelastic collisions in one dimension by using the principles of conservation of momentum and energy.	Does the textbook provide language of dominant function for production? YES or NO	Elaboration/ Description Compare and Contrast	 Storyboard (Demo the collision of two objects and have students develop a storyboard detailing what happens before, during and after the collision). Lab Report Write-up 	Elaboration/Description • There are several types of, including,and	 Heterogeneous Cooperative Learning Groups (Lab Groups) Think-Pair-Share (storyboards) 	Circle Map		

Quarter 2 Standards	Functions for I (Bold denotes domi	Production inant function)	Sample Products	Sentence Frames	Structured Oral Language Practice Routine(s) (CM Binder Tab 3)	Correlating Thinking Map(s)
e. Students know the relationship between the universal law of gravitation and the effect of gravity on an object at the surface of Earth. f. Students know applying a force to an object perpendicular to the direction of its motion causes the object to change direction but not speed (e.g. Earth's gravitational force causes a satellite in a circular orbit to change direction but not speed). m. Students know how to solve problems involving the forces between two electric charges at a distance (Coulomb's Law) or the forces between two masses at a distance (universal	Does the textbook provide language of dominant function for production? YES or NO	Description/ Elaboration (1e, f & m) Cause & Effect (1e & f) Proposition and Support	 Circle Map (Gravitation) Summary Using Proposition and Support language: Universal gravitation problem (Aristotlian, Newtonian and Einstein explanations of gravity) Summary Using a summary template: Describe how the law of universal gravitation is related to prior understanding of the acceleration of gravity (a = 9.8 m/s²) 	Description/ Elaboration • can be described as Proposition and Support • Predict the path of from Earth.	 Numbered Heads Together (Gravity) Think-Pair-Share (Summary Template) 	Circle Map Multi-Flow Map

Quarter 2 Standards	Functions for (Bold denotion) func	or Production tes dominant ction)	Sample Products	Sentence Frames	Structured Oral Language Practice Routine(s) (CM Binder Tab 3)	Correlating Thinking Map(s)
g. Students know circular motion requires the application of a constant force directed toward the center of the circle. 1. Students know how to solve problems in circular motion by using the formula for centripetal acceleration in the following form: $a = v^2/r$	Does the textbook provide language of dominant function for production? YES or NO	Description/ Elaboration (1g & l) Cause and Effect (11)	 Centripetal Force Lab (Predict & summarize what will occur) Text pg. 237 Lab Report Write-up 	• <u>Cause and Effect</u> • If travels in a circular motion & is released, then it will	 Heterogeneous Cooperative Learning Groups (Lab Groups) Think-Pair-Share (centripetal force lab in groups) 	Multi-Flow Map

Quarter 3 Standards	Functions for (Bold denote function	Production s dominant ion)	Sample Products	Sentence Frames	Structured Oral Language Practice Routine(s) (CM Binder Tab 3)	Correlating Thinking Map(s)
 a. Students know waves carry energy form one place to another. b. Students know how to identify transverse and longitudinal waves in mechanical media, such as springs and ropes, and on the earth (seismic waves). c. Students know how to solve problems involving wavelength, frequency, and wave speed. d. Students know sound is a longitudinal wave whose speed depends on the properties of the medium in which it propagates. e. Students know radio waves, light, and X-rays are different wavelength bands in the spectrum of electromagnetic waves whose speed in a vacuum is approx. 3.0x10⁸ m/s. f. Students know how to identify the characteristic properties of waves: interference (beats, diffraction, refraction, Doppler effect and polarization 	Does the textbook provide language of dominant function for production? YES or NO	Elaboration/ Description (4a,d,e & f) Compare and Contrast (4b) Sequencing (4c)	 Double Bubble Map (Venn Diagram)(Longitudinal vs. transverse waves) Tree Map (Waves types – string, spring, water, sound, seismic, etc.) Summary Using a summary template: List the electromagnetic wave types in order of increasing wavelength. 	Elaboration/ Description • The primary distinction between and can be described as • Characteristics of include and	 Heterogeneous Cooperative Learning Groups (Students ID objects on the EM spectrum and describe why it is there and how it is used). Give One Get One (Demo wave interference using a wave generator/bowl of water and have students discuss how they could use the water to demonstrate both constructive and destructive interference.) 	Circle Map Double Bubble Map

Quarter 3 Standards	Functions for (Bold denote funct	Production es dominant ion)	Sample Products	Sentence Frames	Structured Oral Language Practice Routine(s) (CM Binder Tab 3)	Correlating Thinking Map(s)
k. Students know the force on a charged particle in an electric field is qE, where E is the electric field at the position of the particle and q is the charge of the particle. I. Students know how to calculate the electric field resulting from a point charge. m. Students know static electric fields have as their source some arrangement of electric charges. o. Students know how to apply the concepts of electrical and gravitational potential energy to solve problems involving conservation of energy.	Does the textbook provide language of dominant function for production? YES or NO	Elaboration/ Description (5k) Cause and Effect (51,m, and o) Sequencing (51 and m) Proposition and Support	 Quick Draw (Like and oppositely charged particles with varying chargese.g. draw the electric field between two charges, -3q and +q). Summary Students write a summary using language of Proposition and Support: Electrostatic charge problem (one- fluid versus two-fluid theory) 	• <u>Sequencing</u> Rules for drawing electric field lines: When drawing electric field lines, first, then and, lastly 	• Think-Pair-Share (Justify your quick draw to another student)	Flow Map

Quarter 3 Standards	Functions fo (Bold denot func	r Production tes dominant tion)	Sample Products	Sentence Frames	Structured Oral Language Practice Routine(s) (CM Binder Tab 3)	Correlating Thinking Map(s)
 a. Students know how to predict the voltage or current in simple direct current (DC) electric circuits constructed from batteries, wires, resistors, and capacitors. b. Students know how to solve problems involving Ohm's Law. c. Students know any resistive element in a DC circuit dissipates energy, which heats the resistor. Students can calculate the power (rate of energy dissipation) in any resistive circuit element by using P = IR. d. Students know the properties of transistors & their role in circuits. 	Does the textbook provide language of dominant function for production? YES or NO	Elaboration/ Description (5d) Cause and Effect (5a and c) Compare and Contrast (5c) Sequencing (5b)	 Quick Draw (Provide description of circuits and have students draw & solve them) Summary Report (Students find ten appliances and calculate the resistance of each. Then, write a brief report explaining which are the most expensive and why) Lab Report Write-up 	<u> Liaboration</u> Description • Appliance is more expensive because and <u> Compare and Contrast • Appliance is more efficient than because <u> Cause and Effect • Because of</u>, the • Due to the fact that, it will most certainly • Without it will • I predict that</u>	 Heterogeneous Cooperative Learning Groups (Lab Groups) Numbered Heads Together Present summary reports in small groups 	Circle Map Multi-Flow Map Double Bubble Map Flow Map

Quarter 3 Standards	Functions for Production (Bold denotes dominant function)		Sample Products	Sentence Frames	Structured Oral Language Practice Routine(s) (CM Binder Tab 3)	Correlating Thinking Map(s)
 n. Students know the magnitude of the force on a moving particle (with charge q) in a magnetic field is qvbsin(a), where a is the angle between v and B (v and B are the magnitudes of vectors v and B, respectively), and students use the right-hand rule to find the direction of this force. e. Students know charged particles are sources of electric fields and are subject to the forces of the electric fields from other charges. f. Students know magnetic materials and electric currents (moving electric charges) are sources of magnetic fields and are subject to forces arising from the magnetic fields of other sources. g. Students know how to determine the direction of a magnetic field produced by a current flowing in a straight wire or in a coil. h. Students know changing magnetic fields produce electric fields, thereby inducing currents in nearby conductors. i. Students know plasmas, the fourth state of matter, contain ions or free electricity. j. Students know electric and magnetic fields contain energy and act as vector force fields 	Does the textbook provide language of dominant function for production? YES or NO	Elaboration/ Description (5d, e,g and i) Cause and Effect (5e,f,h, and n) Compare and Contrast (5i)	 Quick Draw (magnetic fields in bar and/or horseshoe type magnets). Quick Draw (draw magnetic fields for a current-carrying wire and solenoid). Electromagnets (Build an electromagnet and analyze in a lab report format) (Use the template) Multi-Flow Map (types of matter) Lab Report Write- up 	Cause and Effect If a occurs in a coil, then will result in the coiled wire. Elaboration/ Description Lead as is/are widely acknowledged as and exhibit(s) (plasma)	 Heterogeneous Cooperative Learning Groups (Lab Groups) Think-Pair-Share (Present summary reports of quick draw on magnetic field lines). Whip Around (Right-hand rule) Think-Pair-Share (current versus induced current) 	Multi-Flow Map

Quarter 4 Standards	Functions for Production (Bold denotes dominant function)		Sample Products	Sentence Frames	Structured Oral Language Practice Routine(s) (CM Binder Tab 3)	Correlating Thinking Map(s)
a. Students know heat flow	Does the textbook	Elaboration/	• Flow Map	• <u>Sequencing</u>	• Think-Pair-Share	Flow Map
energy transfer between	of dominant	(3a and b)	Carnot Cycle)	happened. Then,	describes one or more	
systems.	function for	Cause and Effect	• Poster (Students use	occurred and	processes).	
b. Students know that the		(3b)	or any other type of	(engine cycles)	• Numbered Heads	Tree Man
work done by a heat engine that is working in a cycle is	YES or NO	Sequencing (3α)	visual source as an	Elaboration/Description	Together	nee map
the difference between the		Sequencing (5g)	isothermal,	• can be	thermo- dynamics, e.g.	
heat flow into the engine at			isovolumetric,	identified by	zeroth and first laws)	$ \begin{array}{c} \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
heat flow out at a lower			processes). Students	processes)	• Heterogeneous	= = = = = = =
temperature (first law of			can create a tree map.		Cooperative Learning	
this is an example of the			Up		Groups (Lab Groups)	
law of conservation of			• Summary			
energy.			summary template:			
g. Students know how to			Heat flow and work			
heat flow, work, and						
efficiency in a heat engine						
engines lose some heat to						
their surroundings.						

Quarter 4 Standards	Functions for Production (Bold denotes dominant function)		Sample Products	Sentence Frames	Structured Oral Language Practice Routine(s) (CM Binder Tab 3)	Correlating Thinking Map(s)
 c. Students know the internal energy of an object includes the energy of random motion of the object's atoms and molecules, often referred to as the thermal energy. The greater the temperature of the object, the greater the energy of motion of the atoms and molecules that make up the object. d. Students know that most processes tend to decrease the order of a system over time and that energy levels are eventually distributed uniformly. e. Students know that entropy is a quantity that measures the order or disorder of a system and that this quantity is larger for a more disordered system. f. Students know the statement "Entropy tends to increase" is a law of statistical probability that governs all closed systems (Second Law of Thermodynamics). 	Does the textbook provide language of dominant function for production? YES or NO	Elaboration/ Description (3c, e and f) Cause & Effect (3c) Sequencing (3g and e) Proposition and Support	 Semantic Features Map (first column outlines a situation and where two of the other columns have the headings "high entropy" and "low entropy". Students rank 5-10 situations in order from highest to lowest entropy) Entropy & Probability Lab (What number is most probable?)Text pg. 357 Lab Report Write-Up (Refer to Lab Report Drafting Template) 	 Elaboration/ Description When is to a system, entropy can be explained on a molecular level by (pressure/temperature and the kinetic energy of molecules) Proposition and Support is most probable because 	 Talking Chips (using the semantic features map) Heterogeneous Cooperative Learning Groups (Lab Groups) 	Circle Map Multi-Flow Map Double Bubble Map Flow Map

Garden Grove Unified School District Office of Secondary Education Department of 7-12 Instructional Services **Constructing Meaning Functions and Thinking Maps**

The chart below shows the alignment between the dominant language functions (Systematic ELD and Constructing Meaning) and the eight Thinking maps. Aligning the two will support English Learners in their receptive and expressive language acquisition.

Language Function	Language Function	Thinking Map
Elaboration/ Description	Defining content and text Describes attributes, qualities, characteristics and properties Explain relationships of objects in space Comparing whole to parts Analysis of text	Circle Map Bubble Map Brace Map
Compare/ Contrast	Compare and Contrast Understand and express how two or more things are similar and how they are different Understand and express the relationship between two ideas, concepts, or things	Double-Bubble Map Bridge Map
Sequencing	Sequencing and ordering Relate steps in a process Express time relationships and actions within a larger event	Flow- Map
Cause-Effect	Cause and Effect Explain the cause of an outcome Explain why something occurred	Multi-Flow Map
Proposition and Support	Defend an opinion Explain reasoning, or justify a position Classifying and sorting	Multi-Flow Map Tree Map Tree Map Tree Tree Map Tree Tree Tree Map Tree Map Tree Tree Tree Tree Tree Tree Tree Tree
Summarizing	Express main ideas and significant details	Tree Map Brace Map Circle Map \exists \exists \exists \exists